Liiketoiminnan analytiikka (5 op)

Toteutuksen tunnus: DIG4HM002-3001

Toteutuksen perustiedot


Ajoitus
01.08.2019 - 01.01.2020
Toteutus on päättynyt.
Opintopistemäärä
5 op
Toimipiste
Pasilan toimipiste
Opetuskielet
suomi
englanti
Paikkoja
15 - 40
Koulutus
LUJOM Liiketoiminnan uudistamisen ja johtamisen koulutus
PAKEM Palveluliiketoiminnan johtamisen ja kehittämisen koulutus
LITEM Liiketoiminnan teknologiat -koulutus
Opettajat
Lili Aunimo
Jouni Soitinaho
Ryhmät
MAICTF
ICT-palvelut ja tietojärjestelmät, masterit, Pasila
MADIGF
Digitaalisen liiketoiminnan mahdollisuudet, masterit, Pasila
Opintojakso
DIG4HM002

Arviointiasteikko

H-5

Toteutustavat, näyttö ja opinnollistaminen

Depending on the implementation, learning takes place in contact lessons, independent studies, teamwork and online-studies. The course includes the assessment of one’s own learning.

The course is centred around a business case to which several data analytics and machine learning methods are applied. The topic may represent a real case occurring in a company or it may be picked up from a set provided by the course organiser. In the case study, the student will learn both how to create value for business as well as how to implement advanced business analytics methods. This casework is done in student groups that consist of both technically and business-wise skilled students.

In addition to the business case, the following learning methods are used: flipped classroom method, individual online assignments, teamwork in contact lessons, hands-on lab guidance online and in contact lessons. The business case project can be done individually if the student has the necessary business and technical skills and upon agreement with the teacher.

Recognition of prior learning (RPL)
If students have acquired the required competence in previous work tasks, recreational activities or on another course, they can show their competence via a demonstration. The demonstration must be agreed with the course teacher. More information and instructions for recognising and validating prior learning (RPL) are available at https://www.haaga-helia.fi/en/recognition-learning Look at "Instructions to students (master)"

Siirry alkuun