Liiketoiminnan analytiikka (5 op)
Toteutuksen tunnus: DIG4HM002-3001
Toteutuksen perustiedot
- Ajoitus
- 01.08.2019 - 01.01.2020
- Toteutus on päättynyt.
- Opintopistemäärä
- 5 op
- Toimipiste
- Pasilan toimipiste
- Opetuskielet
- suomi
- englanti
- Paikkoja
- 15 - 40
- Koulutus
- LUJOM Liiketoiminnan uudistamisen ja johtamisen koulutus
- PAKEM Palveluliiketoiminnan johtamisen ja kehittämisen koulutus
- LITEM Liiketoiminnan teknologiat -koulutus
- Opettajat
- Lili Aunimo
- Jouni Soitinaho
- Ryhmät
-
MAICTFICT-palvelut ja tietojärjestelmät, masterit, Pasila
-
MADIGFDigitaalisen liiketoiminnan mahdollisuudet, masterit, Pasila
- Opintojakso
- DIG4HM002
Arviointiasteikko
H-5
Toteutustavat, näyttö ja opinnollistaminen
Depending on the implementation, learning takes place in contact lessons, independent studies, teamwork and online-studies. The course includes the assessment of one’s own learning.
The course is centred around a business case to which several data analytics and machine learning methods are applied. The topic may represent a real case occurring in a company or it may be picked up from a set provided by the course organiser. In the case study, the student will learn both how to create value for business as well as how to implement advanced business analytics methods. This casework is done in student groups that consist of both technically and business-wise skilled students.
In addition to the business case, the following learning methods are used: flipped classroom method, individual online assignments, teamwork in contact lessons, hands-on lab guidance online and in contact lessons. The business case project can be done individually if the student has the necessary business and technical skills and upon agreement with the teacher.
Recognition of prior learning (RPL)
If students have acquired the required competence in previous work tasks, recreational activities or on another course, they can show their competence via a demonstration. The demonstration must be agreed with the course teacher. More information and instructions for recognising and validating prior learning (RPL) are available at https://www.haaga-helia.fi/en/recognition-learning Look at "Instructions to students (master)"