Data Analytics with PythonLaajuus (5 cr)

Course unit code: ANA001AS2AE

General information


ECTS credits
5 cr
Teaching language
English

Learning objectives

Upon completion of the course, the student will:
• Identify data sources and assess their suitability for business needs.
• Understand the stages of data preparation, modeling, and forecasting.
• Understand the fundamental concepts of machine learning and artificial intelligence.
• Master methods of descriptive and explanatory analytics.
• Be able to utilize various visualization and reporting techniques.
• Understand the concept of information design.

Contents

Content
• Data analytics based on process thinking
• Methods for descriptive and explanatory analytics.
• Analysis and forecasting of time series data.
• Models for predictive analytics and machine learning.
• Applied examples using Python.
• Tools for visualization and reporting.

Implementation methods, demonstration and Work&Study

Depending on the implementation, learning takes place in contact lessons, as independent studies, teamwork and online-studies. Implementations can include literature, assignments, R&D co-operation and company projects. The course includes the assessment of one’s own learning.

Recognition of prior learning (RPL)
If students have acquired the required competence in previous work tasks, recreational activities or on another course, they can show their competence via a demonstration. The demonstration must be agreed with the course teacher. More information and instructions for recognising and validating prior learning (RPL) are available at https://www.haaga-helia.fi/en/recognition-learning Look at "Instructions to students (master)"

Assessment criteria - grade 1

When the implementation type of the course is CONTACT, ONLINE or BLENDED it is required that the student is present during those teaching hours that are marked in the study schedule. If you are absent more than 25 %, your grade will be lowered by one. If you are absent more than 50 %, the course is failed.

The student understands the data analytics process and can apply it, instructed by the teacher, to a business problem. The student understands the following concepts: descriptive, predictive and prescriptive analytics as well as the characteristics of advanced data and is able to solve simple business questions, guided by the teacher.

The student is able to derive and visualize dashboards, scorecards and publish those using related digital tools. The students is able to apply one or some forecasting algorithms to a business problem, instructed by the teacher. The students is able to assess the reliability and relevance of business reports.

Assessment criteria - grade 3

The student understands the data analytics process and can apply it independently to a simple business problem. The student understands the following concepts: descriptive, predictive and prescriptive analytics as well as the characteristics of advanced data and is able to solve simple business questions independently.

The students is able to derive and visualize dashboards, scorecards and publish them using related digital tools. The student is able to apply independently one or some forecasting algorithms to a business problem. The students is able to assess the reliability and relevance of business reports.

Assessment criteria - grade 5

The student understands the data analytics process and can apply it to a slightly complicated business problem. The student understands the following concepts: descriptive, predictive and prescriptive analytics as well as the characteristics of advanced data and is able to solve demanding business questions.

The student is able to derive and visualize dashboards, scorecards and publish them using related digital tools. The student is able to apply independently several forecasting algorithms to different business problems. The student is able to assess the reliability and relevance of business reports.

Siirry alkuun